Rich's Deep Mandelbrot Exploration

Zooming in on any spot near the edges of the Mandelbrot set reveals ever more detail and self-similar structures. As far as we know, this continues for infinite magnification. This page explores one spot on the edge of the Mandelbrot set in increasing magnifications. Each successive image is a 10x magnification centered on the middle of the previous image.

If we take the first image as being an inch square then the final image in this series is 10855 times smaller or 2.54x10-857 m square. A hydrogen atom is approximately 1.06x10-10 m. The smallest meaningful unit of space is the Planck length at 1.616x10-35 m. So it is truely amazing that new detail emerges in the Mandelbrot set at sizes much smaller than we experience in the physical world.

Click any image to see a larger version in a lightbox.

x100
x101
x102
x103
x104
x105
x106
x107
x108
x109
x1010
x1011
x1012
x1013
x1014
x1015
x1016
x1017
x1018
x1019
x1020
x1021
x1022
x1023
x1024
x1025
x1026
x1027
x1028
x1029
x1030
x1031
x1032
x1033
x1034
x1035
x1036
x1037
x1038
x1039
x1040
x1041
x1042
x1043
x1044
x1045
x1046
x1047
x1048
x1049
x1050
x1051
x1052
x1053
x1054
x1055
x1056
x1057
x1058
x1059
x1060
x1061
x1062
x1063
x1064
x1065
x1066
x1067
x1068
x1069
x1070
x1071
x1072
x1073
x1074
x1075
x1076
x1077
x1078
x1079
x1080
x1081
x1082
x1083
x1084
x1085
x1086
x1087
x1088
x1089
x1090
x1091
x1092
x1093
x1094
x1095
x1096
x1097
x1098
x1099
x10100
x10101
x10102
x10103
x10104
x10105
x10106
x10107
x10108
x10109
x10110
x10111
x10112
x10113
x10114
x10115
x10116
x10117
x10118
x10119
x10120
x10121
x10122
x10123
x10124
x10125
x10126
x10127
x10128
x10129
x10130
x10131
x10132
x10133
x10134
x10135
x10136
x10137
x10138
x10139
x10140
x10141
x10142
x10143
x10144
x10145
x10146
x10147
x10148
x10149
x10150
x10151
x10152
x10153
x10154
x10155
x10156
x10157
x10158
x10159
x10160
x10161
x10162
x10163
x10164
x10165
x10166
x10167
x10168
x10169
x10170
x10171
x10172
x10173
x10174
x10175
x10176
x10177
x10178
x10179
x10180
x10181
x10182
x10183
x10184
x10185
x10186
x10187
x10188
x10189
x10190
x10191
x10192
x10193
x10194
x10195
x10196
x10197
x10198
x10199
x10200
x10201
x10202
x10203
x10204
x10205
x10206
x10207
x10208
x10209
x10210
x10211
x10212
x10213
x10214
x10215
x10216
x10217
x10218
x10219
x10220
x10221
x10222
x10223
x10224
x10225
x10226
x10227
x10228
x10229
x10230
x10231
x10232
x10233
x10234
x10235
x10236
x10237
x10238
x10239
x10240
x10241
x10242
x10243
x10244
x10245
x10246
x10247
x10248
x10249
x10250
x10251
x10252
x10253
x10254
x10255
x10256
x10257
x10258
x10259
x10260
x10261
x10262
x10263
x10264
x10265
x10266
x10267
x10268
x10269
x10270
x10271
x10272
x10273
x10274
x10275
x10276
x10277
x10278
x10279
x10280
x10281
x10282
x10283
x10284
x10285
x10286
x10287
x10288
x10289
x10290
x10291
x10292
x10293
x10294
x10295
x10296
x10297
x10298
x10299
x10300
x10301
x10302
x10303
x10304
x10305
x10306
x10307
x10308
x10309
x10310
x10311
x10312
x10313
x10314
x10315
x10316
x10317
x10318
x10319
x10320
x10321
x10322
x10323
x10324
x10325
x10326
x10327
x10328
x10329
x10330
x10331
x10332
x10333
x10334
x10335
x10336
x10337
x10338
x10339
x10340
x10341
x10342
x10343
x10344
x10345
x10346
x10347
x10348
x10349
x10350
x10351
x10352
x10353
x10354
x10355
x10356
x10357
x10358
x10359
x10360
x10361
x10362
x10363
x10364
x10365
x10366
x10367
x10368
x10369
x10370
x10371
x10372
x10373
x10374
x10375
x10376
x10377
x10378
x10379
x10380
x10381
x10382
x10383
x10384
x10385
x10386
x10387
x10388
x10389
x10390
x10391
x10392
x10393
x10394
x10395
x10396
x10397
x10398
x10399
x10400
x10401
x10402
x10403
x10404
x10405
x10406
x10407
x10408
x10409
x10410
x10411
x10412
x10413
x10414
x10415
x10416
x10417
x10418
x10419
x10420
x10421
x10422
x10423
x10424
x10425
x10426
x10427
x10428
x10429
x10430
x10431
x10432
x10433
x10434
x10435
x10436
x10437
x10438
x10439
x10440
x10441
x10442
x10443
x10444
x10445
x10446
x10447
x10448
x10449
x10450
x10451
x10452
x10453
x10454
x10455
x10456
x10457
x10458
x10459
x10460
x10461
x10462
x10463
x10464
x10465
x10466
x10467
x10468
x10469
x10470
x10471
x10472
x10473
x10474
x10475
x10476
x10477
x10478
x10479
x10480
x10481
x10482
x10483
x10484
x10485
x10486
x10487
x10488
x10489
x10490
x10491
x10492
x10493
x10494
x10495
x10496
x10497
x10498
x10499
x10500
x10501
x10502
x10503
x10504
x10505
x10506
x10507
x10508
x10509
x10510
x10511
x10512
x10513
x10514
x10515
x10516
x10517
x10518
x10519
x10520
x10521
x10522
x10523
x10524
x10525
x10526
x10527
x10528
x10529
x10530
x10531
x10532
x10533
x10534
x10535
x10536
x10537
x10538
x10539
x10540
x10541
x10542
x10543
x10544
x10545
x10546
x10547
x10548
x10549
x10550
x10551
x10552
x10553
x10554
x10555
x10556
x10557
x10558
x10559
x10560
x10561
x10562
x10563
x10564
x10565
x10566
x10567
x10568
x10569
x10570
x10571
x10572
x10573
x10574
x10575
x10576
x10577
x10578
x10579
x10580
x10581
x10582
x10583
x10584
x10585
x10586
x10587
x10588
x10589
x10590
x10591
x10592
x10593
x10594
x10595
x10596
x10597
x10598
x10599
x10600
x10601
x10602
x10603
x10604
x10605
x10606
x10607
x10608
x10609
x10610
x10611
x10612
x10613
x10614
x10615
x10616
x10617
x10618
x10619
x10620
x10621
x10622
x10623
x10624
x10625
x10626
x10627
x10628
x10629
x10630
x10631
x10632
x10633
x10634
x10635
x10636
x10637
x10638
x10639
x10640
x10641
x10642
x10643
x10644
x10645
x10646
x10647
x10648
x10649
x10650
x10651
x10652
x10653
x10654
x10655
x10656
x10657
x10658
x10659
x10660
x10661
x10662
x10663
x10664
x10665
x10666
x10667
x10668
x10669
x10670
x10671
x10672
x10673
x10674
x10675
x10676
x10677
x10678
x10679
x10680
x10681
x10682
x10683
x10684
x10685
x10686
x10687
x10688
x10689
x10690
x10691
x10692
x10693
x10694
x10695
x10696
x10697
x10698
x10699
x10700
x10701
x10702
x10703
x10704
x10705
x10706
x10707
x10708
x10709
x10710
x10711
x10712
x10713
x10714
x10715
x10716
x10717
x10718
x10719
x10720
x10721
x10722
x10723
x10782
x10783
x10784
x10785
x10786
x10787
x10788
x10789
x10790
x10791
x10792
x10793
x10794
x10795
x10796
x10797
x10798
x10799
x10800
x10801
x10802
x10803
x10804
x10805
x10806
x10807
x10808
x10809
x10810
x10811
x10812
x10813
x10814
x10815
x10816
x10817
x10818
x10819
x10820
x10821
x10822
x10823
x10824
x10825
x10826
x10827
x10828
x10829
x10830
x10831
x10832
x10833
x10834
x10835
x10836
x10837
x10838
x10839
x10840
x10841
x10843
x10844
x10845
x10846
x10847
x10848
x10849
x10850
x10851
x10852
x10853
x10854
x10855

Details of the parameters used for these computations:

Here is the Bash/Zsh script used to compute the images on the cluster.

deep_mandelbrot.sh
name=deep_mandelbrot x=-1.94154386426666073385494419139602817911002190783983806486255995390970564901841266654110342825040027833437400890080285153552529327388232371146283717027668881590861362991408508818382192753637902940013651676928079154959840543639128710705789946261966322401536496779684342233569702585514036404569468368027709623003705407121586854803770468577214029441021980626839467735283281182663319948425162501139757726233019859661104651575768057772089890530536093546336903563326842789114624929967044053119714067132315872304777456576801951933320843131435868568417931243209070672982581424895069161511755346174216235385885774648591314732196413689311503556588612727187269408874241691974841087855881441722561548154608791302804221857246655758140119158227702095944162158523180675710335847354760536529095575520493785351579199840120211532761876756343130808435230665830020934938543221112081079909739139542994199217699113323641765080079007385893739678573743535741773511560401049413603608150466977026779033151892911965595117342808620118692133269782138546471855839497910778747195417038495889140353552407452462813979865884247117219964609626521955405883942216120822382390240301518825634451113002797903958517780042374768669868605876961997371941004054340838582253877498107382335786449824606444004049030482264919457882439320013661467456591605894357554801802587618779544348760296765593619667730003550914436687920459780348984199661509102043839301448365028378964509455099138460773025273107651621339672997109207592844405085921355044477761954888096227770110133580290394997631024115310189617576320280301943133838300075519310361941099131596321800889020233797326469236132725205057764663720710328551666848930753609443359331448130481041900710459691431714913426703252751947571967544670147394307762368018437507996150024757785995051757400629127935386 y=0.0000892293339542148802272919829589858035157573184985491365534013497345807545516142511469397149227340254773284727735761562371422707868600251597663489406963042316241464024727277383914467526119307103666479936023211178563973072348476624466716957624802981233723506239398422794680891860496058103906488118267738131742630907369904328623619542954811212850982953513536315164703408712552692095279609420680275306429101648926406275381107379180907707352263859347328016787764472509420142628506266103582236137609984767003142310239389456832848062120259156957805594956209430304776643728042483525019600600524987444945171539843757282351045893033312998396154950430039383326640463532644580094068611392337878766755748669395133717213659853675344530279894193194970966181411023333634050346491682169078160619901053509115040890613086868771310251761807249318903963806396677209237220915874371487343505175925749276986089526041420475965999730124291818837015269557404911672743115914752807530580744001871407992010328708110165611600502841642819890286618657551516238241984988123010201511719788299877887464701980936133340884217631999170602503865525907133147554401909151134753881604517170419895018205554070493063143570519191651341914131478022040900027393959614371774452159183649357373611813933649181034898584048409764177590626963963739334568374899911953794270807407737420757720424281568070343108466249711669614733043869539689948379942106459090499557342715575511429200094759829317273504456001382020853064149767176560041825645958181314452312930161303545310845428551923614318965269773077821275030276642958427531272828515379072486562852557909567639681274345070907241110253800158209455298867022577798925055205722291510540395033930802226561727219875181190640009570845824522532447566320440377845742731390068739472139795727332157605065081990993127837 escape=8500000 image_size=256 for i in `seq 0 1744`; do decimal_digits=$((i + 5)) OpenMPI/run.sh mpi_mandelbrot_mp $x $y 1e-$i $escape $image_size $decimal_digits deep_mandelbrot/$name-$i done

See Computing the Mandelbrot Set for information about the C++ programs used to create these images.

Computed with a Raspberry Pi 5 Cluster

Thanks to microfractal for the coordinates of this location.

©2025 Richard Lesh. All rights reserved.